Author profiling:
more linguistics and explanation

Ben Verhoeven
In close collaboration with Walter Daelemans

Presented as a JOTA Lecture
Ljubljana, Slovenia
22 November 2016
Text mining

Three layers of information in text

• Objective
 – Facts, concepts, characteristics of concepts, relations between concepts, . . .
 – Who does what, where, how and why?

• Subjective
 – Opinion, sentiment, emotion, . . .
 – Who believes what about what?

• Metadata - Profile
 – Age, gender, region, . . .
 – What do we know about the author?
Example

• Objective
 – Who? Damjan Popič
 – Did what? Presented at TEDxKranj on the Janes project

• Subjective
 – What? The presentation was successful
 – Who believes this? Darja Fišer
Example

- Metadata – Profile
 - Who? Darja Fišer
 - Age? Mid-thirties
 - Gender? Female
 - Personality? Extravert
 - Education? Highly educated
Stylometry

The quantitative study of stylistic characteristics of a text

Writing style

A combination of invariant and unconscious decisions in language production on all linguistic levels, uniquely associated with specific authors or groups of authors

→ Human Stylome Hypothesis (Van Halteren et al. 2005)
Computational stylometry

• Authorship identification
 – Attribution - attribute text to one of limited set of authors
 – Verification - is unknown text written by given author?

• Author profiling
 – Prediction of sociological or psychological characteristics of an author
Text categorization

- Class representation
- Document representation (features)
- Supervised machine learning method
Class representation

Author profiling
• Age (e.g. 10s, 20s, 30s, 40s, ...)
• Gender (e.g. male vs. female)
• Location
• Personality
• Education
• Ideology
• Mental health
Brief catalogue of features

Numeric
• Complexity, readability
• Vocabulary richness
 – Type-token ratio
 – Hapax legomena
• Averages or distributions of
 – Syllable length
 – Word length
 – Sentence length

Character-level
• Letter frequency
• Punctuation
• Spelling errors
• Character n-grams
Brief catalogue of features

Word-level
• Word n-grams
• Special dictionaries
• Morphology: prefixes and suffixes

Syntax
• Part-of-speech distributions
• Frequencies of syntactic chunks (e.g. NP = Det + Adj + N)

...
Which documents?

Data with associated classes needed to train a classifier.
Not that many existing resources (especially for Dutch)

Issues

• Authorial profile can be hard to get
• Not all freely available
 – Non-disclosure agreements
 – Anonymization problems
• None have more than 2 kinds of meta-data
Why do we want all meta-data?

• All aspects have an influence on the author’s writing style
• More importantly: these aspects are reflected in the same kind of features
 – E.g. pronouns (Pennebaker, 2011)

• Solutions:
 – control for some aspects
 – balance the data
 – take all aspects into account
Some resources for personality

- **Essays dataset (Pennebaker, later Mairesse)**
 - English stream-of-consciousness texts by students
- **myPersonality (Stillwell & Kosinski)**
 - Large-scale data collection through Facebook app, many languages
- **Personae (Luyckx & Daelemans)**
 - Dutch essays, written by students
- **CSI Corpus (Verhoeven & Daelemans)**
 - Dutch papers, essays and reviews written by students
- **TwiSty Corpus (Verhoeven, Daelemans & Plank)**
 - Multilingual Twitter stylometry corpus
CLiPS Stylometry Investigation (CSI)

- Corpus in two genres: essays and reviews
- Large amount of meta-data
- Multitude of purposes
 - Mostly in computational stylometry
- Freely available
- Yearly expansion
CSI Corpus

Author meta-data
• Age
• Gender: male/female
• Sexual orientation*: straight or LGBT
• Region of origin: Belgian provinces or The Netherlands
• Personality profile: Big Five and MBTI*

* Provided optionally
Personality typologies

Big Five
- Openness to experience
- Conscientiousness
- Extraversion
- Agreeableness
- Neuroticity

Score 0-100 per trait

MBTI (Myers-Briggs Type Indicator)
- Extravert – Introvert
- Thinking – Feeling
- Sensing – iNtuition
- Judging – Perceiving

Dichotomy with score 0-100
CSI Corpus

Document meta-data

• Genre
 – Essays, papers: written for Dutch proficiency course (university level), formal text
 – Reviews: special assignment

• Document info
 – Topic, sentiment, veracity (true/false) of reviews
 – Grades of papers and essays
CSI Corpus

Corpus size

<table>
<thead>
<tr>
<th>Genres</th>
<th># docs</th>
<th># tokens</th>
<th>Avg. length</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviews</td>
<td>1298</td>
<td>202,827</td>
<td>156</td>
<td>65</td>
</tr>
<tr>
<td>Essays</td>
<td>517</td>
<td>565,885</td>
<td>1095</td>
<td>734</td>
</tr>
<tr>
<td>Total</td>
<td>1815</td>
<td>768,712</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CSI Corpus

Advantages
- Multiple purposes
- Yearly expansion
- Text from similar sources (within each genre)
- Enables cross-genre experiments

Disadvantages
- Opportunistic nature (restricted to authors at hand) influences balance of meta-data
Twitter Stylometry (TwiSty)

TwiSty Corpus

- Large-scale multilingual Twitter corpus for personality and gender
- All Western European languages in top 20 of Twitter frequencies, apart from English
 - IT, NL, DE, ES, PT, FR
TwiSty Corpus

• Developed on idea of Plank & Hovy (2015)
 – Twitter mining for only one week
 – Search for MBTI types via API
 – Only English
 – Annotating gender

– Result
 • 1500 authors
 • 1.2M tweets
Refresher: MBTI

• Myers-Briggs Type Indicator
 – Extraversion vs. Introversion
 – iNtuitive vs. Sensing
 – Thinking vs. Feeling
 – Judging vs. Perceiving

• 16 Types
 – E.g. ESTJ, ISFP, ENTP, ...
Twisty Corpus

Data collection

- Twitter search instead of mining through API
- Search for combination of each MBTI type with language-specific words
- Download HTML

<table>
<thead>
<tr>
<th>Language</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian</td>
<td>che, sono, fatto</td>
</tr>
<tr>
<td>Dutch</td>
<td>ik, jij, het, persoonlijkheid</td>
</tr>
<tr>
<td>German</td>
<td>ich, bist, Persönlichkeit, dass</td>
</tr>
<tr>
<td>French</td>
<td>suis, c’est, personnalité</td>
</tr>
<tr>
<td>Spanish</td>
<td>soy, tengo, personalidad</td>
</tr>
<tr>
<td>Portuguese</td>
<td>sou, personalidade</td>
</tr>
</tbody>
</table>
Twisty Corpus

Data clean-up

• Filter out tweets that were not relevant:
 – Not about author
 • @schrooten ok, ik heb deze test destijds met een uitgebreide vragenlijst op mijn werk gedaan. Meerdere van mijn collega PM-ers zijn ESTJ...
 – Ambiguity of type
 • Volgens mij ben ik zowel INTJ als ESTJ -- het eerste als ik me rot voel, het tweede als het goed gaat. #beetjevreemd
 – In different language
 • Estj seregas muzon4ik? Het. O, nu tad davaj daj timati, etoj dj dljee.;D
 • Label for gender
TwiSty Corpus

• Corpus size in profiles

<table>
<thead>
<tr>
<th></th>
<th>DE</th>
<th>IT</th>
<th>NL</th>
<th>FR</th>
<th>PT</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>411</td>
<td>490</td>
<td>1,000</td>
<td>1,405</td>
<td>4,090</td>
<td>10,772</td>
<td></td>
</tr>
</tbody>
</table>

• Corpus size in tweets

<table>
<thead>
<tr>
<th>Language</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>952,549</td>
<td>2,318</td>
<td>819</td>
<td>2,628</td>
</tr>
<tr>
<td>Italian</td>
<td>932,785</td>
<td>1,904</td>
<td>912</td>
<td>2,146</td>
</tr>
<tr>
<td>Dutch</td>
<td>2,083,484</td>
<td>2,083</td>
<td>963</td>
<td>2,426</td>
</tr>
<tr>
<td>French</td>
<td>2,786,589</td>
<td>1,983</td>
<td>932</td>
<td>2,254</td>
</tr>
<tr>
<td>Portuguese</td>
<td>8,833,132</td>
<td>2,160</td>
<td>878</td>
<td>2,456</td>
</tr>
<tr>
<td>Spanish</td>
<td>18,547,622</td>
<td>1,722</td>
<td>952</td>
<td>1,930</td>
</tr>
</tbody>
</table>
TwiSty Corpus

Language Identification

• Many bilingual/polyglot Twitter users
• Tweet-level identification
• Majority voting approach with three language identifiers

<table>
<thead>
<tr>
<th>Tool</th>
<th>Authors</th>
<th># Langs</th>
</tr>
</thead>
<tbody>
<tr>
<td>langid.py</td>
<td>Lui & Baldwin (2012)</td>
<td>97</td>
</tr>
<tr>
<td>langdetect</td>
<td>Nakatani (2010)</td>
<td>53</td>
</tr>
<tr>
<td>ldig</td>
<td>Nakatani (2012)</td>
<td>17</td>
</tr>
</tbody>
</table>
TwiSty Corpus

- Corpus size in tweets

<table>
<thead>
<tr>
<th>Language</th>
<th>Total</th>
<th>Confirmed</th>
<th>% Confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian</td>
<td>932,785</td>
<td>658,332</td>
<td>70.6</td>
</tr>
<tr>
<td>Dutch</td>
<td>2,083,484</td>
<td>1,541,259</td>
<td>74.0</td>
</tr>
<tr>
<td>German</td>
<td>952,549</td>
<td>713,744</td>
<td>74.9</td>
</tr>
<tr>
<td>Spanish</td>
<td>18,547,622</td>
<td>13,493,445</td>
<td>72.8</td>
</tr>
<tr>
<td>French</td>
<td>2,786,589</td>
<td>1,995,865</td>
<td>71.6</td>
</tr>
<tr>
<td>Portuguese</td>
<td>8,833,132</td>
<td>6,353,763</td>
<td>71.9</td>
</tr>
</tbody>
</table>
Experiment

- Instances: 200 tweets per user
- Preprocessing: normalize urls, hashtags, mentions and tokenize
- Features: character and word n-grams
- Model: LinearSVC
- Evaluation: 10-fold cross-validation
Gender prediction

<table>
<thead>
<tr>
<th>Language</th>
<th>WRB</th>
<th>MAJ</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>50.28</td>
<td>53.75</td>
<td>77.62</td>
</tr>
<tr>
<td>IT</td>
<td>54.78</td>
<td>65.46</td>
<td>73.29</td>
</tr>
<tr>
<td>NL</td>
<td>50.04</td>
<td>51.41</td>
<td>82.61</td>
</tr>
<tr>
<td>FR</td>
<td>51.84</td>
<td>59.60</td>
<td>83.80</td>
</tr>
<tr>
<td>PT</td>
<td>52.15</td>
<td>60.36</td>
<td>87.55</td>
</tr>
<tr>
<td>ES</td>
<td>51.00</td>
<td>57.06</td>
<td>87.62</td>
</tr>
</tbody>
</table>
Personality prediction

<table>
<thead>
<tr>
<th>Lang</th>
<th>Trait</th>
<th>WRB</th>
<th>MAJ</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>I-E</td>
<td>60.22</td>
<td>72.61</td>
<td>72.27</td>
</tr>
<tr>
<td></td>
<td>S-N</td>
<td>71.03</td>
<td>82.43</td>
<td>74.49</td>
</tr>
<tr>
<td></td>
<td>T-F</td>
<td>51.16</td>
<td>57.62</td>
<td>59.03</td>
</tr>
<tr>
<td></td>
<td>J-P</td>
<td>53.68</td>
<td>63.57</td>
<td>61.99</td>
</tr>
<tr>
<td>IT</td>
<td>I-E</td>
<td>65.54</td>
<td>77.88</td>
<td>77.78</td>
</tr>
<tr>
<td></td>
<td>S-N</td>
<td>75.60</td>
<td>85.78</td>
<td>79.21</td>
</tr>
<tr>
<td></td>
<td>T-F</td>
<td>50.31</td>
<td>53.95</td>
<td>52.13</td>
</tr>
<tr>
<td></td>
<td>J-P</td>
<td>50.19</td>
<td>53.05</td>
<td>47.01</td>
</tr>
<tr>
<td>NL</td>
<td>I-E</td>
<td>53.02</td>
<td>62.28</td>
<td>62.90</td>
</tr>
<tr>
<td></td>
<td>S-N</td>
<td>57.66</td>
<td>69.57</td>
<td>70.49</td>
</tr>
<tr>
<td></td>
<td>T-F</td>
<td>51.47</td>
<td>58.59</td>
<td>59.95</td>
</tr>
<tr>
<td></td>
<td>J-P</td>
<td>52.00</td>
<td>60.00</td>
<td>57.99</td>
</tr>
</tbody>
</table>
Personality prediction

<table>
<thead>
<tr>
<th>Lang</th>
<th>Trait</th>
<th>WRB</th>
<th>MAJ</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>I-E</td>
<td>54.77</td>
<td>65.44</td>
<td>66.49</td>
</tr>
<tr>
<td></td>
<td>S-N</td>
<td>68.00</td>
<td>80.00</td>
<td>78.90</td>
</tr>
<tr>
<td></td>
<td>T-F</td>
<td>50.65</td>
<td>55.68</td>
<td>58.22</td>
</tr>
<tr>
<td></td>
<td>J-P</td>
<td>52.13</td>
<td>60.32</td>
<td>56.79</td>
</tr>
<tr>
<td>PT</td>
<td>I-E</td>
<td>53.36</td>
<td>62.97</td>
<td>66.69</td>
</tr>
<tr>
<td></td>
<td>S-N</td>
<td>65.60</td>
<td>76.08</td>
<td>73.42</td>
</tr>
<tr>
<td></td>
<td>T-F</td>
<td>51.27</td>
<td>57.98</td>
<td>61.62</td>
</tr>
<tr>
<td></td>
<td>J-P</td>
<td>50.87</td>
<td>56.61</td>
<td>56.53</td>
</tr>
<tr>
<td>ES</td>
<td>I-E</td>
<td>50.00</td>
<td>50.49</td>
<td>61.09</td>
</tr>
<tr>
<td></td>
<td>S-N</td>
<td>55.42</td>
<td>66.47</td>
<td>61.54</td>
</tr>
<tr>
<td></td>
<td>T-F</td>
<td>51.63</td>
<td>59.04</td>
<td>59.73</td>
</tr>
<tr>
<td></td>
<td>J-P</td>
<td>51.53</td>
<td>58.75</td>
<td>56.08</td>
</tr>
</tbody>
</table>
Conclusion

• Large-scale, “opportunistic”, multilingual social media corpus

• Gender prediction works very well

• Personality prediction is more difficult, yet possible
Slovene Twitter

- Currently, working on gender prediction on Slovene tweets
 - Twitter corpus from Janes project
 - 6,500 authors
 - 2/3 male, 1/3 female
Explanation

• Lack of effort in stylometry to explain results, despite some great early examples

• Argamon & Koppel (2003)
 – Use of pronouns (more by women) and certain types of noun modification (more by men)
 • ‘Male’ words: a, the, that, these, one, two, more, some
 • ‘Female’ words: I, you, she, her, their, myself, yourself, herself
 – More ‘relational’ language by women, more ‘informative/rational’ language by men
 • Even in formal language (non-fiction)
More linguistics

• Discourse

• Semantics
Discourse

• What
 – relations between sentences
 – coherent structure
 – situating text in the world

• How
 – discourse relational devices (DRD)
Discourse

Features

• Dictionary with categories for different kinds of discourse structure
• Frequencies of categories are an approximation of their use
Discourse

• Penn Discourse Treebank tagset
 (PDTB Research Group, 2007)

 – TEMPORAL
 • Synchronous: terwijl
 • Asynchronous: alvorens, nadat

 – CONTINGENCY
 • Cause: dankzij, want
 • Condition: aangezien, als
Discourse

• Penn Discourse Treebank tagset
 (PDTB Research Group, 2007)

 – COMPARISON
 • Contrast: oftewel
 • Concession: ofschoon, wanneer

 – EXPANSION
 • Conjunction: alsook, eveneens
 • Instantiation: zoals
 • Restatement: alsof
 • Alternative: noch, hetzij
 • Exception: uitgezonderd
 • List: en
Ambiguity

• Nothing much changed while/TIME I was away.

• **While/CONCESSION** I wouldn’t recommend a night-time visit, by day the area is lovely.

• One person wants out, while/CONTRAST the other wants the relationship to continue.

⇒ Weighting
Dictionary Creation

• Penn Discourse Treebank (PDTB): text with annotated discourse connectives
 – Make dictionary of connectives with weighted classes

• Extrapolated this dictionary to other languages
 – Using multilingual lexica of discourse markers created from aligned Europarl corpora
Dictionary Creation

- 86 English seed words from PDTB
- Number of translations found
 - Dutch: 335
 - German: 341
 - Slovene: 299
- On average 2 categories per connective
- Mean strength of strongest category: 90%
Ongoing research

• Evaluate this dictionary on German annotated lexicon: DimLex

• Experiments using discourse dictionaries for Dutch & English gender classification on news corpora
Hvala za pozornost!

Ali imate vprašanja?

ben.verhoeven@uantwerpen.be
@verhoevenben